Работа и устройство гидромотора

Описание страницы: работа и устройство гидромотора - 2020 год от профессионалов для людей.

В чем отличия гидравлического мотора от насоса

Насос и мотор — гидравлические машины преобразовывающие один вид энергии в другой.

Насос способен преобразовать механическую энергию в гидравлическую.

Мотор — обладает противоположными возможностями — преобразовывает энергию потока жидкости в механическую. Эти машины похожи по конструкции, но в чем их отличия и могут ли они заменять друг друга?

Отличия в конструкции этих гидромашин обусловлены особенностями применения.

Насос всасывает жидкость из бака, а для этого ему требуется создать разряжение во всасывающем трубопроводе, то есть избыточного давления на входе насоса быть не может, по этой причине уплотнения многих насосов не рассчитаны на появление давления на входе.

Гидромотор, устанавливается в напорном трубопроводе и приводит в движение исполнительные механизмы, в том числе и находящиеся под нагрузкой, давление на входе гидромотора может возрастать до величины максимального, уплотнения гидромотора выполнены таким образом, чтобы обеспечивать герметичность и работоспособность машины даже при высоком давлении.

Утечки насоса отправляются на всасывание, в зону пониженного давления. Утечки в гидромоторе отправить на вход машины нельзя, так давление там может быть очень высоким, поэтому в конструкции мотора предусмотрена отдельная линия дренажа, которая соединяется с баком.

Вал насоса приводится в движение двигателем, и подвижные элементы, при необходимости могут перемещаться под воздействием инерционных сил, замыкая объем рабочих камер. Гидромотор работает иначе, в него попадает жидкость, и никаких инерционных сил при незамкнутых рабочих камерах в момент начала движения возникнуть не может, поэтому эти силы в процессе запуска использовать невозможно.

Может ли насос работать как мотор

Большинство насосов нельзя использовать в качестве гидромоторов. Причина для разных типов насосов — различна. Рассмотрим основные типы машин.

Большинство шестеренных насосов (например насосы серии НШ) не могут работать в качестве гидромоторов из-за особенности уплотнений, в насосе избыточное давление на всасывании не создается, а при работе гидромотора под давлением могут находиться как, вход так и выход. Кроме того, в насосах серии НШ отсутствует дренаж. Избыточное давление на входе выдавливает уплотнение шестеренного насоса, при попытке его использования в качестве мотора.

Работа большинства шестеренных насосов в качестве гидромотора возможна лишь при значительных изменениях конструкции: добавлении линии дренажа, замене уплотнений. Разумеется после таких изменений надежная и долговечная работа гидропривода невозможна.

В пластинчатых насосах и моторах рабочие камеры образованы поверхностями пластин, ротора, статора, торцевых крышек.

Пластинчатые насосы не могут работать в качестве гидромоторов по причине того, что пластинки в насосе выходят из пазов и прижимаются к поверхности статора за счет центробежных сил, возникающих при вращении вала. Если использовать пластинчатый насос в качестве гидромотора, то поступающая жидкость заполнить все пространство внутри насоса, и вал машины вращаться не станет. В пластинчатых гидромоторах установлена специальная пружина, поджимающая пластины к статору.

Среди аксиально-поршневых машин есть и обратимые, которые могут работать и как насос и как мотор, это должно быть указано в документации.

Может ли гидромотор работать как насос

Большинство гидромоторов могут работать в качестве насосов, об этом должно быть указано в документации. В гидромоторах, обычно присутствует отдельная линия дренажа, которую следует вывести в бак независимо от того, как используется данная машина.

КПД гидромотора работающего в режиме насоса, может быть несколько ниже, чем у необратимого насоса.

Обратимые гидромашины

Обратимым называют насос, работающий в режиме гидродвигателя (мотора).

Для обеспечения обратимости в конструкцию насоса должны быть внесены изменения, позволяющие ему с высокой степенью надежности выполнять функции гидромотора. Например в конструкции шестеренного насос-мотора должны быть установлены уплотнения, выдерживающие избыточное давление входе, предусмотрена линия дренажа для отведения утечек в бак.

Обратимые гидравлическую машину часто называют насос-мотором. Если при этом машина способна изменять направление движения, то ее называю реверсивной.

Гидравлическая схема обратимого реверсивного насос-мотора показана на рисунке.

Источник: http://www.hydro-pnevmo.ru/topic.php?ID=29

Ремонт гидромоторов

Ремонт гидромоторов и их дальнейшее техническое обслуживание требует специальных условий, а специалисты должны отличаться высоким профессионализмом и иметь соответствующую квалификацию. А все потому, что гидромотор считается одним из самых сложных гидравлических устройств.

Работа гидромотора:

Чтобы качественно производить ремонт гидромоторов, делать диагностику и возможный обмен, необходимо четко понимать принцип работы устройств и соблюдать требования к монтажу. Также нужно ориентировать устройство гидромотора только на качественную работоспособность.

Работа гидромотора заключается в том, что он представляет собой гидродвигатель вращательного действия и предназначен для преобразования энергии потока рабочей жидкости в механическую энергию вращения выходного вала.

Ремонт гидромоторов:

Если вам срочно требуется произвести ремонт аксиально-поршневых, планетарных, шестеренных гидромоторов импортного производства, тогда, обращайтесь к менеджерам нашей компании, чтобы вовремя решить все технические вопросы.

Наши специалисты обладают высокой квалификацией и выявят все неисправности, сделают ремонт, проведут тест и выполнят всю работу в кратчайшие сроки. Кроме того у нас все время действует гибкая система оплаты, и для постоянных и клиентов действует система скидок.

Среди частых ремонтных работ гидромоторов у нас заказывают мойку, сборку, разборку, замену изношенных деталей. Производится дефектация, притирка, при необходимости делается покраска деталей. Также специалисты прогоняют испытание на стенде с регулировкой и окончательной доводкой. Все вышеперечисленные работы и другие, ремонтные и диагностические действия проходят в специализированной мастерской с высококвалифицированным оборудованием.

Источник: http://gidroturbo.com/page/remont-gidromotorov

Гидромотор – устройство, работа, ремонт.

Содержание

Гидромотор — это устройство, которое преобразовывает энергию жидкости в механическую энергию, приводящую в действие рабочий орган машины.

Читайте так же:  Изменения размера алиментов образец

Пластинчатый гидромотор предназначен для применения в реверсивных регулируемых и нерегулируемых гидроприводах, в которых требуются частые включения, автоматическое и дистанционное управление.

Особенностями пластинчатых гидромоторов является:
герметичное отделение нагнетательной полости от всасывающей, что осуществляется при помощи ротора, статора и пластин (лопаток);
незначительная зависимость от скорости рабочей жидкости сил, действующих на рабочие органы гидромотора.

Типы гидромоторов.

Гидромоторы как и пластинчатые гидронасосы различаются на агрегаты однократного, двойного и многократного действия.

В однократных гидромоторах за один оборот вала происходит один полный цикл работы, представляющий собой процесс всасывания и процесс нагнетания.

В агрегатах двойного действия за один оборот вала происходят два полных цикла работы – два процесса всасывания и два процесса нагнетания.

В агрегатах тройного действия – три полных цикла работы за один оборот вала.

Кроме того гидромотры, как и насосы пластинчатого типа, подразделяются на регулируемые и нерегулируемые.

Конструктивно регулируемыми выполняются гидромоторы однократного действия, агрегаты многократного действия выполняются только как нерегулируемые.

Устройство гидромотора и принцип работы.

Работа гидромотора выглядит следующим образом. Рабочая жидкость из отверстия 1 попадает в подковообразный канал 3 корпуса 2, откуда через окно 4 переднего диска 5 попадает на пластины 6 ротора 7.

При этом ротор 7 вместе с валом 8 поворачивается в направлении против часовой стрелки, если смотреть со стороны вала.

Слив рабочей жидкости происходит через окна 35 в кольцевом выступе 34 заднего диска 12 и далее через отверстие 16 крышки 13.

Вал гидромотора 8 вращается в двух шарикоподшипниках 9. На валу 8 на шлицах расположен ротор 7.

В пазах ротора 7 перемещаются пластины 6, оставаясь постоянно прижатыми к внутренней поверхности статора 10.

Первоначальный прижим пластин 6 к статору 10 осуществляется при помощи пружин 11, выполненных в виде коромысла, причем каждая пружина прижимает пару пластин, расположенных под углом в 90 градусов одна по отношению к другой.

Таким образом при вращении ротора насколько одна пластина выходит из паза, настолько другая входит в паз ротора, и, следовательно, пружина в процессе работы гидромотора не деформируется.

Ротор 7 вращается между двумя стальными распределительными дисками: передним диском 5 со стороны корпуса 2 и задним диском 12 со стороны крышки 13.

Кольцевые выступы 33 и 34 одинакового диаметра в заднем диске 12 входят по скользящей посадке в отверстие крышки 13. Полость 17 за задним диском 12 соединена с напорной магистралью отверстиями 18, 19, 25-27 и 29 и пазами 20 в заднем диске 12.

Пазы 20 расположены напротив окон 4 переднем диске 5, соединенных с каналом 3 в корпусе 2, в который выходит отверстие 1, сообщающееся с напорной магистралью.

Автоматический прижим заднего диска 12 достигается созданием давления в полости 17. Первоначальный прижим заднего диска 12 осуществляется тремя пружинами 21.

Под действием давления рабочей жидкости, поступающей со стороны отверстия 29, золотник 22 отодвигается до упора в пробку 23, так как полость с другой стороны золотника 22 соединена отверстием 24 с полостью 14, сообщающейся со сливной магистралью отверстием 16 в крышке 13.

Из полости 17 давление передается через отверстия 27 и 36 в полости 28 и прижимает пластины 6 к статору 10.

Для изменения направления вращения вала рабочая жидкость подается под давлением в отверстие 16, а отверстие 1 соединяется со сливной магистралью.

При этом золотник 22 давлением рабочей жидкости через отверстие 24 отодвигается до упора в пробку 15, так как отверстия 29, 18 и 19 и пазы 20 сообщаются со сливной магистралью через окна 4 переднего диска 5 и подковообразный канал 3 корпуса 2.

Когда золотник отодвинут до упора в пробку 15, давление рабочей жидкости передается из отверстия 24 через отверстия 26 и 27 в полость 17 за задним диском 12 и в полости 28 под пластинами 6.

Давление в полости 28 под пластинами 6 передается также через отверстия 36.

От наружных утечек по валу 8 предохраняет манжета 30 из маслостойкой резины. Через отверстие 31 происходит слив протечек из корпуса 2.

Уплотнение между корпусом 2 и крышкой 13, а также по наружному диаметру статора 10, достигается с помощью резинового кольца 32.

Конструктивно, гидромоторы делятся на:
радиальный;
аксиально поршневой.

Ремонт гидромотора.

При работе гидромотора могут возникать некоторые неисправности. В этом разделе приведены возможные неисправности требующие ремонт гидромотора и способы устранения.

Треск при работе гидромотора под нагрузкой может возникнуть при поломке пружин, прижимающих пластины к внутренней поверхности статора, или застревании пластин в пазах ротора.

Для устранения этой неисправности необходимо заменить сломанные пружины новыми, а затем проверить легкость перемещения пластин в пазах ротора, если пластина ходит туго её нужно притереть.

Течь по валу гидромотора может быть вызвана повреждением уплотнения. Для устранения течи следует заменить уплотнение.

Повышенные утечки через дренажное отверстие могут вызываться следующими причинами:
поломкой пружин, прижимающих задний диск к статору;
застреванием золотника, расположенного в центральном отверстии заднего диска;
заклиниванием заднего диска в расточке крышки.

Для устранения таких неисправностей необходимо соответственно:
заменить сломанные пружины новыми;
промыть или, в случае необходимости притереть золотник;
промыть задний диск и крышку.

При вскрытии гидромотора необходимо соблюдать осторожность, приняв меры к тому, чтобы детали после разборки были установлены на свое место.

Область применения.

Аксиально поршневой гидромотор используются в тех случаях, когда необходимо получить высокие скорости вращения вала, а радиально-плунжерные — когда необходимы небольшие скорости вращения при большом создаваемом моменте вращения.

Например, для поворота башни автомобильного крана используются радиально-плунжерные гидромоторы. В станочных гидроприводах широко распространены пластинчатые гидромоторы.

В бытовых счётчиках расхода воды также используются небольшие гидромоторы.

На сегодняшний день гидромоторы широко используются для автоматизации производственных процессов, такие агрегаты активно используются в области сельского хозяйства.

Читайте так же:  Документы подтверждающие кредиторскую задолженность

Гидромоторы используются в нефтегазовой и космической отраслях, применяются для оснащения строительной техники, например автокранов, работают в составе автомобильного транспорта.

Источник: http://www.nektonnasos.ru/article/shesterenchatyj/gidromotor/

Устройство гидромотора

Гидромотор регулируемый аксиально-поршневой, устройство гидромотора, работа гидромотора, характеристики и позиция гидромоторов на мировых рынках техники. Эту и другую информацию можно найти и изучить на страницах нашего сайта. С помощью наших усилий мы стараемся предоставлять вам самые необходимые данные по гидрооборудованию.

Сейчас узнаем что такое гидромотор, какие бывают виды, устройство гидромотора, и правила эксплуатации.

Гидромотор (мотор гидравлический) – гидравлический двигатель предназначенный сообщать выходному звену вращательного движения на бесконечный угол поворота. Принцип работы гидромотора заключается в том, что в данном гидравлическом механизме на вход под давлением подаётся рабочая жидкость, а на выходе, крутящий момент снимается с вала.

Гидрораспределитель выступает главным устройством, которое управляет движением вала гидромотора, также управление возможно с помощью средств регулирования гидропривода.

Общее устройство гидромотора.

Устройство гидромотора можно рассмотреть на примере аксиально-поршневого агрегата, который является наиболее часто используемым в гидравлике. Его устройство основано на кривошипно-шатунном механизме, где цилиндры двигаются параллельно друг другу, и одновременно вместе с цилиндрами двигаются поршни. Также одновременно, за счёт вращения вала кривошипа, поршни передвигаются относительно цилиндров.

Устройство гидроцилиндров аксиально-поршневого вида выполняется по одной из двух принципиальных схем:

  1. Схема с наклонным боком цилиндров
  2. Схема с наклонным диском

Гидромотор, который укомплектован наклонным диском, состоит из блока цилиндров. Его ось совпадает с осью ведущего вала. У него под углом находится ось диска, с которой связаны поршневые штоки. Таким образом, ведущим валом приводится во вращение блок цилиндров.

Основные параметры гидромотора – это рабочее давление, рабочий объем, частота вращения и крутящий момент.

Гидромотор регулируемый предназначен для установки в гидрообъемных приводах машин для привода исполнительных механизмов. Он имеет широкий диапазон рабочего объема, разные виды управления и регулирования. Рабочий объем в исходном состоянии может быть максимальным и минимальным, а управление – позитивным или негативным.

Устройство регулируемого гидромотора.

Устройство регулируемого гидромотора можно рассмотреть на примере гидравлического механизма Серии 303. И первое что отметим из особенностей, так это то, что гидромотор данного типа функционально состоит из 2-х узлов:

Регулятор гидромотора регулируемого предназначен для того, чтобы изменять рабочий объем гидромеханизма за счет изменения угла наклона цилиндрового блока. Сам регулятор представляет собой деталь, которая включает: ступенчатый поршень, установленный в корпусе, палец – зафиксированный в поршне винтом, золотник с башмаком и подпятником, рычаг и крышку, в которой размещены детали. Эти детали обладают разными функциональными назначениями.

Качающий узел гидромотора состоит из вала, установленного в корпусе на подшипниках, и блока цилиндров. На стороне конца вала гидромотор закрывается крышкой, которая уплотняется манжетой и резиновым кольцом. Фланец вала соединен с поршнями и шипом с помощью сферических головок шатунов.

Гидромотор регулируемый предназначен для привода механизмов с дискретным диапазоном регулируемых скоростей.

Гидромотор регулируемый , как и любое другое гидрооборудование, активно используется во многих отраслях промышленности, где есть гидравлическая система. Механизм с явными доказательствами упрощает схему обслуживания всей системы, и при этом увеличивает мощность, а тем самым и производство. В целом, гидравлика сегодня представляет собой незаменимую силовую и механическую технологию, применяемую для больших и малых двигательных агрегатах.

Виды гидромотора:

  1. Аксиально-плунжерный (аксиально-поршневой)
  2. Радиально-плунжерный (радиально-поршневой)
  3. Шестеренный
  4. Пластинчатый

Эти 4 вида гидромоторов считаются наиболее распространенными, так как имеют широкое применение в гидрооборудовании, практичные, и имеют большую производительность при своих малых габаритах.

Гидромотор аксиально-поршневой – практически самый распространенный гидравлический механизм, который имеет широкое применение в гидравлике. Причина в том, что он отличается рядом преимущественных факторов: небольшая масса, меньшие радиальные размеры, также меньше габарит и момент инерции вращающихся масс, есть возможность работы с большим числом оборотов, и еще такой гидромотор удобен в монтаже и ремонте, что придает некую комфортность и экономит время.

Другими словами это можно назвать, как обладание универсальностью и высокой удельной мощностью. Гидромотор аксиально-поршневой может выполнять множество функций, от привода ходовой части и транспортировки материалов до вспомогательных функций. Изготовленный гидромотор с прецизионной точностью гарантирует передачу сил, и имеет регулировочные характеристики, которые требуются в процессе фрезерования.

Устройство гидромотора аксиально-поршневого.

Поршень гидромотора, поворачиваясь на 180 ° вокруг своей оси, совершает движения поступательного характера, выталкивая жидкость из цилиндра. Уже при последующем повороте на 180 ° поршень совершает вход, и тем самым всасывание. Блок цилиндров своей торцевой поверхностью прилегает к гидрораспределителю с проделанными полукольцевыми пазами. Пазы соединяются по отдельности, один — с напорным трубопроводом, другой — со всасывающим. Сам же блок цилиндров оснащен отверстиями, которые соединяют каждый цилиндр с гидрораспределителем.

Гидромотор аксиально-поршневой используется в объемных гидроприводах, в которых частота вращения вала очень важна, а на выходе требуется получить высокий крутящий момент. Данный механизм эксплуатируется в технике и агрегатах, которые имеют большие нагрузки. Это сельхозтехника, карьерная техника, строительная и коммунальная техника, экскаваторы, бульдозеры и т.д.

Гидромотор регулируемый аксиально-поршневой таких импортных производителей, как Bosch Rexroth, Kawasaki, Parker, Eaton, Sumhydraulik, Hydromatik, Sauer Danfoss, Linde считаются наиболее распространенными и востребованными на территории стран СНГ.

Следует помнить, что выпускается большое количество видов гидромоторов с различными характеристиками. И все они применяются в определенных агрегатах. Каждый вид гидромоторов необходимо применять на строго определенных машинах, для которых они произведены. Потому, как устройство каждого вида гидромотора отличается от другого.

Источник: http://gidroturbo.com/page/ustrojstvo-gidromotora

Основные поломки гидромотора и способы устранения

Гидравлический мотор – дорогостоящее оборудование, покупка которого может обойтись в половину стоимости спецтехники. Своевременное выявление и устранение поломок позволит избежать больших затрат.

Читайте так же:  Зарплатная карта сбербанка какие преимущества

Типичные неисправности

Наиболее частыми поломками гидромоторов являются:

  1. Замедленное вращение приводного механизма
  • Износ или повреждение компонентов распределительного узла, поршневой группы, уплотнений;
  • Появление дефектов на поверхности деталей, принимающих участие в передаче крутящего момента;
  • Повышение давления в выходной трубе.
  • Разборка мотора на отдельные детали для измерения величины разрушений или износа;
  • Замена уплотнений;
  • Восстановление или замена деталей поршневой группы.
  1. Нестабильная работа вала гидромотора на малых оборотах
  • Недопустимая величина износа деталей поршневой группы, распределительного узла либо разрушение РТИ;
  • Возникновение шероховатостей на поверхности эксцентрика вала и шатунов (в гидромоторах одноходового типа);
  • Появление задиров на компонентах поршневой группы, участвующих в передаче крутящего момента (в многоходовых моторах).
  • Измерение расхода в дренажной линии;
  • При прерывистом потоке мотор разбирается для исследования деталей поршневой группы, эксцентрика вала и распределительного узла.
  1. Вал не вращается или вращается неравномерно
  • Проникновение воздуха в гидросистему;
  • Несоответствие давления на входе требуемым значениям;
  • Нестабильная подача гидравлической жидкости к мотору;
  • Нарушения, допущенные при соединении валов и исполнительного органа;
  • Неправильно подобран типоразмер или установлен рабочий объем (в регулируемом моторе).

Способы устранения поломок:

  • Удаление воздуха из гидравлической системы;
  • Регулировка давления в предохранительном клапане до требуемой величины;
  • Устранение перекоса и биения в соединении;
  • Установка нового гидронасоса с большим рабочим объемом.
  1. Перегрев мотора
  • Ошибки при настройке системы охлаждения или её выход из строя;
  • Значение вязкости гидравлической жидкости ниже требуемого;
  • Естественный износ или разрушение узлов.

Меры по устранению неисправностей:

  • Увеличение мощности или настройка системы охлаждения в соответствии с требованиями технических регламентов;
  • Замена рабочей жидкости;
  • Замена неисправных либо изношенных деталей;
  • Установка нового гидромотора.
  1. Протечки масла

Возможные причины поломки:

  • Недостаточное затягивание крепежных элементов;
  • Износ шейки вала или манжеты;
  • Разрушение уплотнений;
  • Образование дефектов на корпусе мотора.
  • Замена резинотехнических изделий (РТИ);
  • Подтягивание креплений;
  • Разборка и дефектовка мотора при давлении выше 0,5 кг/см2;
  • Восстановление рабочих поверхностей от дефектов.

При выявлении поломок гидромотора заказывайте ремонт в компании «СДМ-гидравлика».

Видео (кликните для воспроизведения).

Источник: http://sdm-gidro.ru/osnovnye-polomki-gidromotora-i-sposoby-ustraneniya/

ГИДРАВЛИЧЕСКИЕ ДВИГАТЕЛИ

ОСНОВНЫЕ ПОЛОЖЕНИЯ И ОПРЕДЕЛЕНИЯ

Гидравлическим двигателем называется гидравлическая машина, предназначенная для преобразования энергии потока жидкости в механическую работу выходного (ведомого) звена (вала или штока).

Гидравлические двигатели подразделяются на объемные гидро- двигатели и турбины (рис. 2.35).

Рис. 2.35. Классификация гидравлических двигателей

Объемный гидродвигатель — гидравлическая машина, в которой движение ведомого звена осуществляется в результате наполнения рабочих камер жидкостью и перемещения вытеснителей (поршней, пластин и т.д.).

Гидравлическая турбина — ротационный двигатель, преобразующий механическую энергию воды (ее энергию положения, давления и скоростную) в энергию вращающегося вала. Гидравлические турбины делятся на два класса: реактивные и активные. Гидротурбины применяются главным образом на гидроэлектростанциях, где они приводят в движение генераторы электрического тока.

ОБЪЕМНЫЕ ГИДРОДВИГАТЕЛИ

Под рабочим звеном объемного гидродвигателя принимается деталь (или группа деталей), участвующая в образовании рабочей камеры и приводящая в движение выходное звено объемного гидродвигателя.

По характеру движения выходного звена объемные гидродвигатели делятся следующим образом:

  • • гидродвигатели возвратно-поступательного движения, или гидроцилиндры;
  • • поворотные гидродвигатели с ограниченным углом поворота выходного звена (а 2 ; R и г — большой и малый радиусы, м;

b — ширина пластины, м; / =- — плечо (расстояние от оси

вращения вала до центра приложения силы давления), м; z — число пластин.

Угловая скорость вращения вала гидродвигателя (с -1 ):

где Q — расход жидкости, м 3 /с.

Фактический момент М и фактическая угловая скорость соф будут меньше расчетных на величину потерь трения и утечек жидкости, характеризуемых механическим г|м и объемным цо

КПД гидродвигателя:

Угол поворота ср гидродвигателя зависит от числа пластин:

    • для однопластинчатого — (р -1 , а для специальных исполнений — 6000. 10000 мин -1 , минимальная — 20. 30 мин -1 , в отдельных случаях— 4. 1 мин -1 .

Время разгона и торможения вала гидромотора, как правило, не превышает нескольких сотых долей секунды, возможны режимы частых включений и выключений, реверсов, изменения частоты вращения. Крутящий момент гидромотора легко регулируется изменением перепада давлений в его камерах.

Регулируемые гидромоторы оснащают различными типами регуляторов, позволяющими оптимально приспосабливаться к условиям нагрузки.

В гидроприводах могут применяться объемные гидромашины (насосы-моторы), способные одновременно выполнять функции насоса и мотора.

Источник: http://studref.com/597021/agropromyshlennost/gidravlicheskie_dvigateli

Устройство и принцип работы гидронасосов

«Центр технического обеспечения и сервиса» представляет собой промышленно-торговое объединение, занимающееся как поставками гидравлического оборудования известных брендов на российский рынок, так и производством запасных частей и техническим обслуживанием гидравлических систем.

Компания располагает собственным производственным участком и сервисным центром, которые оснащены современным оборудованием.

У нас вы можете приобрести гидронасосы различных типов, а при выборе вам будет оказана техническая поддержка наших специалистов, благодаря которой будет правильно подобрано оборудование для решения конкретных задач.

Широкий ассортимент гидронасосов позволит подобрать оборудование с оптимальным соотношением цены и качества. У нас представлены к продаже гидронасосы отечественного и зарубежного производства. Вся представленная к продаже продукция имеет сертификаты соответствия.

Помощь в подборе оборудования: +7 (495) 211 03 84

Ваше сообщение было успешно отправлено!

Наши специалисты скоро свяжутся с Вами!

Гидронасосы, их виды и особенности

Гидронасос представляет собой сложное устройство, преобразующее энергию потока жидкости в механическую энергию, которая воздействует на рабочий механизм. Также гидронасос обеспечивает подачу рабочей жидкости под давлением в трубопровод.

Гидронасосы являются основным элементом гидросистемы и находят широкое применение в строительной сфере, они применяются для оснащения автокранов и строительной техники, в нефтегазовой промышленности, железнодорожной отрасли, лесоперерабатывающей промышленности.

Читайте так же:  Оформления кредита без прописки

Несмотря на большое разнообразие видов гидронасосов, устройство и принцип их работы практически одинаковы.

Устройство и принцип работы гидронасосов достаточно просты и практически одинаковы для всех типов устройств данной категории.

Гидронасосы состоят из двух изолированных камер (всасывания и нагнетания), между которыми перемещается рабочая жидкость. Когда камера нагнетания заполняется жидкостью, то осуществляется давление на поршень, который начинает перемещаться, сообщая движение рабочему механизму.

Поскольку технические характеристики гидронасосов отличаются такими параметрами, как:

  • рабочий объем, то есть тот объем жидкости, который вытесняется за один оборот работы устройства;
  • рабочее давление;
  • частота вращения, то при выборе типа гидронасоса необходимо учитывать эти параметры.

Среди широкого многообразия типов гидронасосов основными являются:

  • ручные;
  • радиально-поршневые;
  • аксиально-поршневые;
  • шестеренные.

Каждый из указанных видов отличается дополнительными параметрами, своими преимуществами и недостатками. Однако неизменным преимуществом для всех типов гидромоторов является их компактный размер, прочность корпуса и надежность эксплуатации.

Ручные гидронасосы

Этот тип гидронасосов в основном рассчитан на обеспечение работы системы в аварийном режиме. Они имеют самую простую конструкцию, когда поршень приводится в движение нажатием на рычаг или опусканием рычага.

Эти гидронасосы отличаются простотой эксплуатации и технического обслуживания, однако в основном имеют низкий уровень производительности. Популярность этот типа устройств обусловлена их доступной ценой и простотой конструкции.

Радиально-поршневые

Эти устройства, в свою очередь, подразделяются на радиальные и гидронасосы с эксцентричным валом.

Гидронасосы этой группы отличаются высоким давлением рабочей жидкости. В роторных агрегатах поршневая группа расположена в роторе, при работе которого поршни стыкуются с отверстиями, перегоняя рабочую жидкость из одной камеры в другую.

В гидронасосах с эксцентричным валом поршневая группа расположена в статоре, а распределение жидкости происходит посредством клапанов.

Основным преимуществом таких устройств является возможность создания высокого уровня давления, высокая прочность корпуса и надежность устройств. К минусам можно отнести большой вес такого насоса.

Аксиально-поршневые

Это наиболее востребованные гидронасосы, которые также можно разделить на две группы: с наклонным и прямым углом относительно оси вращения поршневой группы. Перемещение рабочей жидкости в устройствах этого типа осуществляется путем попеременного возвратно-поступательного перемещения поршней, вытесняющих жидкость.

Важным преимуществом гидронасосов этого вида является их высокий уровень КПД и высокая производительность. Они способны обеспечивать максимальную частоту оборотов — до 5000 в минуту.

Основным недостатком этих устройств является их высокая стоимость.

Шестеренные

Вытеснение рабочей жидкости в насосах этого типа осуществляется за счет вращения двух шестерен, сцепление которых может различаться. В зависимости от этого, различают гидронасосы с внутренним и внешним зацеплением.

Эти гидронасосы отличаются низкими оборотами, а также невысоким КПД — на уровне 85%.

Однако их использование в сельхозтехнике, строительной технике специального назначения, а также в системах подачи смазочных жидкостей, вполне оправдано низкой стоимостью таких устройств.

Как видим, даже самые популярные и востребованные типы гидронасосов существенно отличаются своими техническими характеристиками, что, несомненно, следует учитывать при выборе оборудования.

Чтобы правильно подобрать гидравлическое оборудование, лучше обратиться за консультацией к опытным специалиста, которые смогут подобрать тот или иной вид устройства, исходя из конкретных условий применения.

Обслуживание и ремонт

Несмотря на простоту конструкции и высокую надежность, гидронасосы, как и любые другие технические устройства, имеют определенный срок службы и возможность возникновения неполадок и неисправностей.

В основном, гидронасосы выходят из строя по причине:

  • неправильного управления устройством;
  • неправильно подобранной гидравлической жидкости;
  • применения не соответствующих режиму эксплуатации устройства комплектующих;
  • неправильной настройки;
  • отсутствия своевременного технического обслуживания, которое включает в себя замену фильтров и масла, устранение протечек.

Преимущества нашей компании

Наша компания работает на рынке России 5 лет и представляет гидравлическое оборудование от ведущих производителей США и стран Европы. Вся продукция, представленная у нас к продаже, сертифицирована и отличается высоким качеством.

Наша компания осуществляет прямые поставки гидравлического оборудования от производителей, что позволяет держать цены на доступном уровне за счет исключения торговых наценок посреднических фирм.

Наш сервисный центр оснащен современным оборудованием, позволяющим производить ремонт гидравлических систем любой сложности. А коллектив сервисного центра состоит из специалистов высшей категории, что дает гарантию выполнения работ на качественно высоком уровне.

Кроме того, отлично оснащенная производственная база нашей компании, позволяет производить запасные части для гидравлического оборудования в соответствии с высокими требованиями европейского качества.

Мы также осуществляем техническое обслуживание гидравлического оборудования, оказываем консультативную помощь при выборе оборудования, запасных частей и комплектующих.

Если у Вас остались вопросы, заполните форму:

Источник: http://ctois.ru/poleznaya-informaciya/ustrojstvo-i-princip-raboty-gidronasosov

Гидравлические машины.

Содержание

Гидравлические машины в принципе своей работы основываются на применении закона Паскаля, который говорит, что давление, производимое на жидкость, передается внутри неё во все стороны с одинаковой силой.

Что же такое гидравлический агрегат? Гидравлический — значит работающий за счет давления или движения жидкости, например воды.

В этой статье мы собрали для Вас принцип действия и основные схемы наиболее часто применяемых гидростатических машин.

Гидравлический пресс применяется для получения больших сжимающих усилий, которые необходимы, например, для деформации металлов при обработке давлением (прессование, ковка, штамповка), при испытании различных материалов, уплотнении рыхлых материалов и т.д.

Схема и принцип действия

Самая простая схема гидравлической машины, такой как гидравлический пресс состоит из двух цилиндров А и В (малого и большого диаметра), соединенных между собой трубкой С. Такая схема похожа на работу сообщающихся сосудов.

В малом цилиндре расположен малый поршень гидравлической машины D, соединенный с рычагом ОКМ, имеющим неподвижную шарнирную опору в точке О, а в большом цилиндре – большой поршень гидравлической машины (плунжер) Е, составляющий одно целое с платформой F, на котором расположено прессуемое тело G.

Читайте так же:  Улучшения условий труда на рабочем месте

Рычаг приводится в действие вручную или при помощи специального двигателя. При этом поршень D начинает двигаться вниз и оказывать на находящуюся под ним жидкость давление, которое передается на поршень Е и заставляет его вместе со столом двигаться до тех пор, пока тело G не войдет в соприкосновение с неподвижной плитой Н.

При дальнейшем подъеме стола начинается процесс прессования (сжатия) тела G.

Если данное устройство служит не для прессования, а только для поднятия груза, т.е. представляет собой так называемый гидравлический подъемник, то неподвижная плита Н в этом случае оказывается лишней и из конструкции исключается.

Вместе с указанными на схеме частями гидравлический пресс снабжается всасывающим и нагнетательным клапанами, регулирующими работу пресса, и клапаном, предохраняющим его от разрыва при чрезмерном возрастании давления (на схеме клапаны не показаны).

Сила давления, КПД и формула машины

Установим основные соотношения, определяющие работу пресса. Пусть усилие, действующее на конец М рычага ОКМ, будет называться Q, а плечи рычага ОК = a, КМ = b. Тогда, рассматривая равновесие рычага и составляя уравнение моментов относительно его центра вращения О выводим уравнение

Находим силу передаваемую на поршень D малого цилиндра

и создаваемое в жидкости добавочное гидростатическое давление

где d1 – диаметр малого цилиндра.

Давление ρ передается на поршень Е большого цилиндра, в результате чего полная сила давления на этот поршень, обусловленная силой Q, будет

где d2 – диаметр большого цилиндра.

Из этого выражения видно, что сила P2 может быть получена сколько угодно большой путем выбора соответствующих размеров цилиндров и плеч движущего рычага.

На самом деле действительная сила P2, передаваемая на стол и осуществляющая процесс прессования, оказывается несколько меньше из-за неизбежных потерь энергии на преодоление трения в движущихся частях пресса и утечек жидкости через различные неплотности и зазоры.

Эти потери учитываются введением в формулу коэффициента полезного действия – КПД. Таким образом формула гидравлической машины

Практически этот коэффициент имеет значение от 0,75 до 0,85.

В современных гидравлических прессах можно получить очень большие давления (до 25 000 т.). В таких конструкциях малый цилиндр выполняют обычно в виде поршневого насоса высокого давления, подающего рабочую жидкость (воду или масло) в большой цилиндр (собственно пресс), часто с добавлением в схему специального устройства – гидравлического аккумулятора, выравнивающего работу насоса.

Гидравлический аккумулятор

Как показывает название – гидравлический аккумулятор служит для аккумулирования, т.е. накапливания, собирания энергии. Он применяется на практике в тех случаях, когда необходимо выполнить кратковременную работу, требующую значительных механических усилий, например, поднять большую тяжесть, открыть и закрыть ворота шлюзов и т.п.

Наиболее широкое применение гидравлические аккумуляторы получили при работе гидравлических прессов, используемые здесь как установки, накапливающие жидкость в период холостого хода пресса и отдающие ее при рабочем ходе, когда подача насосов оказывается недостаточной.

Гидравлический аккумулятор состоит из цилиндра А, в котором помещен плунжер В, присоединенный своей верхней частью к платформе С, несущей груз большого веса. В аккумулятор по трубе D насосом нагнетается жидкость (вода или масло), которая поднимает вверх плунжер с грузом. При достижении крайнего верхнего положения насос автоматически выключается.

Обозначим вес плунжера с грузом через G, а его полную высоту подъема через Н. Тогда энергия, запасенная аккумулятором при полном подъеме плунжера, будет равна G*H, а создаваемое им в жидкости гидростатическое давление

где F – площадь сечения плунжера

Под таким постоянным давлением находящаяся в аккумуляторе жидкость подводится по трубе Е к гидравлическим машинам – например, прессовым машинам, обеспечивая тем самым их работу с постоянной нагрузкой.

Гидростатическое давление, создаваемой аккумулятором, будет тем больше, чем меньше площадь сечения плунжера.

Однако при чрезмерном уменьшении сечения плунжера последний может оказаться недостаточно прочным. Поэтому при необходимости получения очень больших давлений применяются так называемые дифференциальные аккумуляторы со ступенчатым поршнем.

В этом случае давление на жидкость, находящуюся в цилиндре А, передается через небольшую площадь кольцевого уступа ступенчатого поршня, пропущенного сквозь обе крышки цилиндра (верхнюю и нижнюю), и следовательно, сечение поршня может быть выбрано такого размера, при котором обеспечивается необходимая прочность.

Гидравлическая турбина

Гидравлические двигатели служат для преобразования гидравлической энергии потока жидкости в механическую энергию, получаемую на валу двигателя и используемую в дальнейшем для различных целей, в основном для привода рабочих машин.

Наиболее распространенным представителем этой группы является гидравлическая турбина. Гидравлические турбины обычно для устанавливаются на гидроэлектрических станциях, где они служат приводом электрических генераторов.

Энергия воды преобразуется в турбине в механическую энергию на валу. Вал приводит в движение ротор электрогенератора и механическая энергия превращается в электрическую.

Насос

В насосах, применяемых для подъема и перемещения жидкости по трубопроводам, происходит обратный процесс. Механическая энергия, подводимая к насосам от двигателей, приводящих насосы в действие, преобразуется в гидравлическую энергию жидкости.

На рисунке схематично изображены
А – турбинная установка
Б – насосная установка

Насосы это самые распространенная разновидность гидравлических машин. Они применяются во всех отраслях промышленности и сельского хозяйства.

Насосы используются в водоснабжении, отоплении, вентиляции, для работы котельной установки и во многих других областях техники.

Подробная схема работы насоса размещена в этой статье

Гидравлические машины весьма широко используются в настоящее время в нефтяной промышленности. Насосы применяются при транспортировке нефти и нефтепродуктов по трубопроводам, при бурении нефтяных скважин для подачи в них промывочных растворов и т.д.

Видео (кликните для воспроизведения).

Источник: http://www.nektonnasos.ru/article/gidravlika/gidravlicheskie-mashiny/

Работа и устройство гидромотора
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here